
FPGA systolic-based Architecture for Video Applications in Real Time

Griselda Saldaña
Computer Science Department

National Institute for Astrophysics, Optics and Electronics (INAOE)
Sta. Maria Tonantzintla, Puebla. Mexico

gsaldan@inaoep.mx

Abstract

 Motion estimation constitutes a significant

computational part of video compression standards
such as MPEG4. The most frequently used technique
is based on a Full Search Block Matching Algorithm
which is highly computing intensive and requires a
large bandwidth to obtain real-time performance. This
paper describes an efficient reconfigurable
architecture suitable for motion estimation.

1. Motivation

Motion estimation (ME) is a basic bandwidth

compression method used in video-coding systems.
Among several computation methods, the Full Search
Block Matching Algorithm (FBMA) is the most used.

ME requires a huge amount of computations, which
justifies the great research effort that has been made to
develop efficient dedicated architectures and
specialized processors. FBMA algorithm is extremely
regular and suitable for implementations based on
array structures.

Other faster block-matching algorithms have been
also proposed however most of them consider only a
reduced set of candidate motion vectors, simpler
matching or distortion computations, or even a subset
of the block motion field. These algorithms provide
suboptimal solutions, since the considered search
spaces are necessarily reduced and most of them apply
non-regular processing schemes.

2. Previous Work

Several methods have been proposed for ME

hardware implementation [1-3] such as block matching
algorithms, parametric/motion models, optical flow,
and pel-recursive techniques. Among these
approaches,

block matching is the most common.
These architectures make use of massive pipelining

and parallel processing provided by systolic [4] or
linear arrays. Most of them require two separate
memories for storing the current frame and the
previous frame increasing their size; hence, efficient
memory utilization becomes one of the most important
design problems. Furthermore, they are not
intrinsically power efficient.

3. Contributions

This work proposes an integrated platform to
implement several algorithms based on window-
operators in a single processing module aimed to
pursue the implementation of higher complexity
algorithms such as ME.

The system is based on a customizable 2D systolic
architecture and a smart memory schema to reduce the
number of access to a global memory, which increases
the overall system clock frequency. Furthermore, the
system is capable of process chaining based on the use
of local storage buffers to reduce the number of access
to data memories and router elements to handle data
movement among different structures inside the same
architecture.

4. Preliminary results

The proposed architecture based on a 2D processor

array is shown in Fig. 1.
The global bus receives processing parameters,

from the High level control unit and distributes them
inside the architecture to interchange back and forward
control or configuration information.

Input buffers keep some rows of the image been
processed as neighboring elements as required by
FBMA. These data can be accessed in parallel

reducing the accessing time required and they add the
possibility to carry out computations with local data.

Global Control Bus

Pr
oc

es
so

r

In
pu

t B
uf

fe
r

O
ut

pu
t B

uf
fe

r
Router

Parameters

External RAM

Router

High Level
Control

Image Flow
Bus

Figure 1. Block diagram of the architecture.

The architecture has been implemented using
Handel-C, DK4 and synthesized to a XCV2000E-6
Virtex-E FPGA with the Xilinx Synthesis Technology
(XST) tool and placed and route with Foundation ISE
7. Synthesis results are shown in Table 1.

Table 1. Technical data for the architecture

Element Specification
FPGA technology 0.18 µm 6-layer metal

process
Number of PEs 49
Off-chip memory data
buses

21 bit-address, 32 bit data

Internal data buses for
ALUs

8 bits for fixed-point
operations

Number of Block RAMs: 18
Number of Slices 14,728
Number 4 input LUTs 28,239
Number of Flip Flops 8,348
Estimated Power
Consumption

1.492 W

Clock frequency 55 MHz
Peak performance ~9 GOPs

The clock frequency reported by the synthesis tool

is 55 MHz as regards a peak performance of ~9 GOPs
is achieved. In order to test the architecture, 640x480
gray-level images and mask of 7x7 have been used.
The main objective for the architecture is to support
several algorithms based on window processing
therefore as a first step filtering, matrix multiplication,
morphologic operators and Gaussian pyramid had been
implemented as shown in Figures 2.

ME application is been developed using the same
processing unit but a double ALU schema has been
used in order to reuse overlapped data in neighbor
macro-blocks.

Figure 2. (a) Filtering, (b) Morphologic Operators, (c)
2 level gaussian pyramid, (d) Matrix Multiplication.

5. Conclusion

In this paper a versatile, modular and scalable

hardware architecture was presented. The throughput
achieved is about 9 GOPs which implies performance
in real time.

ME is currently being developed and analyzed, and
some optimizations are going to be implemented in
order to improve performance.

6. References

[1] T. Komarek and P. Pitsch, “Array architectures for block-
matching algorithms”, IEEE Trans. CAS, Vol. 36, No. 10,
Oct. 1989, pp. 1301-1308.
[2] P. Pirsch, N. Demassieux, W. Gehrke, “VLSI
architectures for video compression”, Proc. of the IEEE, Vol.
83, No. 2, Feb. 1995, pp. 220-246.
[3] M. Sung, “Algorithms and VLSI architectures for motion
estimation”, VLSI Implementations for Image
Communications, P. Pirsch (Ed.), 1993, pp. 251-2281.
[4] J. Baek et al., “A fast array architecture for block
matching algorithm”, Proc. of IEEE ISCAS, Vol. 4, 1994,
pp. 211-214.

A= B =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

279351012
95372311
3576123
6987545
7412395
2145245
9985621

AxB =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

217930592
951327231
151465123
619817545
84623227
210952415
91915827

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

262519391474215703222
229573294606205349173
133306265396121260100
236475410645186489170
150379249434125540132
116297180245111307111
198396405673158440135

 (a)

(b)

(d)

(c)

